skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kundu, Pritha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Sorghum (Sorghum bicolor) plays a critical role in global agriculture, serving as a staple food source and contributing significantly to various industries. However, sorghum cultivation faces significant challenges, particularly from pests like the sugarcane aphid (SCA), which can cause substantial damage to crops. In this study, we investigated the role of the caffeoyl coenzyme‐AO‐methyltransferase (CCoAOMT) gene in sorghum defense against SCA. Feeding by SCA induced the expression of theSbCCoAOMTgene, which is involved in the monolignol biosynthesis pathway. Aphid no‐choice and choice bioassays revealed thatSbCCoAOMToverexpression in sorghum resulted in reduced SCA reproduction and decreased aphid settling, respectively, compared to wild‐type (RTx430) plants. Furthermore, electrical penetration graph (EPG) studies revealed thatSbCCoAOMToverexpression restricts aphid feeding from the sieve elements. SCA feeding also induced the accumulation of lignin in sorghum wild‐type andSbCCoAOMToverexpression plants. Moreover, artificial diet aphid feeding bioassays with hydroxycinnamic acids, ferulic and sinapic acids, showed direct adverse effects on SCA reproduction. Our findings highlight the potential of genetic modification to enhance sorghum resistance to SCA and emphasize the importance of lignin‐related genes in plant defense mechanisms. This study offers valuable insights into developing aphid‐resistant sorghum varieties and suggests avenues for further research on enhancing plant defenses against biotic stresses. 
    more » « less